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Abstract  

Ab initio and nonlocal density functional theory (DFT) calculations were performed to 
determine reaction mechanisms for formation of the six-membered ring C3N3C13 (cyanuric 
chloride) from the monomer, cyanogen chloride (C1CN). MP2 geometry optimizations followed 
by QCISD(T) energy refinements and corrections for zero-point energies for critical points on 
the potential energy surface were calculated using the 6-3IG and 6-311+G basis sets. DFT 
(B3LYP) geometry optimizations and zero-point corrections for critical points on the potential 
energy surface were calculated with the 6-3IG, 6-311+G, and cc-pVTZ basis sets. Two 
formation mechanisms of cyanuric chloride were investigated, the concerted triple association 
(3 C1CN - cyanuric chloride) and the step-wise association (3 C1CN - C12C2N2 + C1CN 
- cyanuric chloride). All calculations show that the lower energy path to formation of cyanuric 
chloride is the concerted triple association. MP2 and DFT intrinsic reaction coordinate (IRC) 
calculations starting from the transition state (TS) for concerted triple association reaction 
proceeding toward the isolated monomer resulted in the location of a local minimum, stable by 
as much as -8.0 kcal/mol, that corresponds to a weakly bound cyclic (C1CN)3 cluster. The 
existence of this cluster on the reaction path for the concerted triple association could lower the 
entropic hindrance to this unusual association reaction mechanism. 
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1. Introduction 

C1CN- and HCN-containing munitions were mass-produced in the earlier part of this century. 

It is expected that aged C1CN- and HCN-fffled munitions will be uncovered in old disposal sites that 

are being excavated for environmental cleanup. These cyanide compounds are extremely toxic and 

must be destroyed. However, there are reports that C1CN and HCN can undergo violent reactions 

and that cylinders containing these agents explode (Aaron et al. 1996). It is crucial that the chemistry 

behind the initiation of these violent events be characterized before handling these munitions as part 

of an environmental cleanup. 

Although little is known about the details of the reactions, it is well known that C1CN and HCN 

will polymerize after long periods of containment (Migridichian 1947). The primary polymerization 

product of HCN is the cyclic trimer, sym-triazine. C1CN polymerizes to cyanuric chloride, the 

chlorinated analog of sym-triazine, as well as to other products, including a tetramer of C1CN 

(Enders 1972). The slow thermal polymerization of HCN to sym-triazine is exothermic, and the 

reaction can be accelerated if the system should reach 184° C (Bretherick 1990). Since the C1CN 

and HCN systems are similar, explosions of containers of C1CN have been attributed to acceleration 

of the polymerization reaction (Aaron et al. 1996), although this has not been proven. Our goals are 

to determine the low-energy reaction mechanism for the formation of the cyclic trimer from isolated 

monomer and to quantify the energy release. This information could help determine if the 

acceleration of the polymerization reactions plays a role in the observed explosions of cylinders 

containing this agent. Toward this end, we have performed quantum-mechanical calculations to 

characterize the formation of the cyanuric chloride from isolated monomer. 

This is the third of our investigations of polymerization reactions of XCN (where X = Cl or H) 

to the cyclic trimer, X3C3N3. The earlier investigations of the formation reactions of sym-triazine 

from HCN provided information about reaction mechanisms and energetics (Pai 1996a, 1996b). 

Additionally, this system was used to assess the performance of density functional theory (DFT) in 

comparison with QCISD(T) and MP2 predictions of critical points and reaction path properties 



(Pai 1996b). In the current study, we are unable to perform MP2 and QCISD(T) calculations using 

the largest basis set from the previous study (Pai 1996a, 1996b), cc-pVTZ. However, we are able 

to perform the same level of DFT calculations for the cyanuric chloride system as in the .yym-triazine 

study. Therefore, we have undertaken the detailed comparison between DFT and ab initio for the 

jyffz-triazine system in anticipation of using the large basis set at the DFT level for the cyanuric 

chloride system. The results of the comparative study using the large basis set established that the 

B3LYP results are as good (or better) of predictors of energies and properties of critical points along 

the reaction path for the formation of sym-triazine as QCISD(T)//MP2. Therefore, we assume that 

DFT will treat the chlorinated analog of the .ryra-triazine system with similar accuracy. 

The two mechanisms that we assume for the association of XCN to form X3C3N3 are (1) a 

concerted triple association reaction where three XCN molecules come together in a concerted 

manner to form the cyclic trimer, 

(I) 3XCN-X3C3N3, 

and (2) a step-wise addition mechanism where two XCN molecules first come together to form a 

dimer, followed by a third monomer that adds to the dimer to form X3C3N3, 

(II) 3XCN - X2C2N2 + XCN - X3C3N3. 

In this study, we characterize the trimerization reactions of C1CN assuming reactions I and II. 

Although there are no data available to shed light on the mechanisms of cyanuric chloride reactions, 

vibrational and structural data of cyanuric chloride are available and allow us to further calibrate our 

theoretical methods through comparison with experiment. We present both ab initio [QCISD(T) and 

MP2] and nonlocal DFT calculations for critical points on the potential energy surface for formation 

reactions of cyanuric chloride. 



2. Methods 

All calculations reported herein were performed using the Gaussian 94 set of programs 

(Frisch et al. 1995). Structures of critical points were located through geometry optimizations at the 

MP2 and DFT levels using the 6-3IG* (Hehre, Ditchfield, and Pople 1972; Hariharan and Pople 

1973; Gordon 1980) and 6-311+G* (McLean and Chandler 1980; Krishnan et al. 1980) basis sets. 

Also, DFT geometry optimizations using the cc-pVTZbasis set (Woon and Dunning 1993; Kendall, 

Dunning, and Harrison 1992; Dunning 1989) were performed for all critical points on the potential 

energy surface (PES). AU critical points were characterized through normal-mode analyses. 

Subsequent QCISD(T) energy refinements on the MP2-optimized structures were performed. The 

DFT calculations used the Gaussian 94 implementation of Becke's three-term hybrid functional (B3) 

(Becke 1993) and the Lee, Yang, and Parr (LYP) (Lee, Yang, Parr 1988; Miehlich et al. 1989) 

correlation functional with nonlocal corrections to both the exchange and correlation functionals. The 

resulting exchange-correlation functionals are referred to in the text as B3LYP. All geometry 

optimizations met the default convergence criteria given by Gaussian 94 (Frisch et al. 1995). All 

DFT calculations were performed using the default grid size given in Gaussian 94 (Frisch 

et al. 1995). Intrinsic reaction coordinate (IRC) calculations leading from the transition states (TS) 

for reactions I and II were performed to establish reaction paths. The IRC calculations were 

performed using the 6-3IG* basis set at both the MP2 and DFT levels. The IRC calculations were 

terminated only when minima were reached as defined by the default convergence criteria of the 

Gaussian 94 set of programs (Frisch et al. 1995). 

3. Results and Discussion 

Molecular structures for critical points corresponding to reactions I and II are shown in Figure 1. 

Table 1 lists the geometric parameters of these critical points. The atom labels in Table 1 are 

consistent with the labeling on the structures shown in Figure 1. In the following comparisons of 

calculated structures and frequencies with experiment, we assume that the most accurate ab initio 
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Table 1. Geometric Parameters for Critical Points on the Cyanuric Chloride PES 

^^sc 
MP2 B3LYP 

ExptF Parameter 
6-3 IG* 6-311+G* 6-3 IG* 6-311+G* cc-pVTZ 

Cyanuric Chloride 

C1N2 1.3353 1.3338 1.3304 1.3270 1.3247 1.325 
C3N2 1.3353 1.3338 1.3304 1,3270 1.3247 1.325 
C3N4 1.3353 1.3338 1.3302 1.3269 1.3247 1.325 
C5N4 1.3353 1.3338 1.3302 1.3269 1.3246 1.325 
C5N6 1.3353 1.3338 1.3303 1.3270 1.3246 1.703 
C5C17 1.7159 1.7119 1.7331 1.7309 1.7280 1.703 
C3C18 1.7159 1.7119 1.7329 1.7308 1.7280 1.703 
C1C19 1.7159 1.7119 1.7328 1.7307 1.7280 112.7 
C3N2C1 113.15 113.16 113.14 113.40 113.42 127.4 
N4C3N2 126.85 126.84 126.85 126.59 126.57 112.7 
C5N4C3 113.15 113.16 113.16 113.42 113.44 127.4 
N6C5N4 126.85 126.84 126.85 126.59 126.56 — 

N4C5C17 116.58 116.58 116.55 116.69 116.72 — 

N2C3C18 116.58 116.58 116.60 116.72 116.73 — 

N6C1C19 116.58 116.58 116.57 116.70 116.70 — 

TS(I) 

C1N2 1.2078 1.2034 1.1863 1.1806 1.1776 — 

C3N2 1.9567 1.9523 2.0331 2.0144 2.0091 — 
C3N4 1.2078 1.2034 1.1863 1.1806 1.1777 — 
C5N4 1.9567 1.9522 2.0342 2.0155 2.0079 — 
C5N6 1.2078 1.2034 1.1864 1.1806 1.1777 — 

C5C17 1.6697 1.6661 1.6759 1.6737 1.6696 — 

C3C18 1.6697 1.6661 1.6760 1.6737 1.6694 — 

C1C19 1.6697 1.6661 1.6758 1.6737 1.6693 — 
C3N2C1 119.43 119.98 123.09 123.34 123.34 — 
N4C3N2 120.57 120.02 116.93 116.68 116.66 — 

C5N4C3 119.43 119.98 123.10 123.32 123.38 — 
N6C5N4 120.57 120.02 116.92 116.67 116.67 — 

N6C5C17 139.75 140.32 144.63 144.22 144.43 — 

N4C3C18 139.75 140.32 144.58 144.18 144.45 — 

N2C1C19 139.75 140.32 144.58 144.18 144.51 — 

C1CN 

CN 1.1844 1.1787 1.1633 1.1556 1.1533 1.160 ±0.007b 

CC1 1.6380 1.6341 1.6455 1.6408 1.6368 1.629 ±0.006b 

C1CN 180.00 180.00 180.00 180.00 180.00 180.00 

a Akimoto (1955); Pascal and Ho (1992); Xu, Ho, and Pascal (1994); Maginn et al. (1993). 
b Values are re (Lafferty, Lide, and Toth 1965). 



Table 1. Geometric Parameters for Critical Points on the Cyanuric Chloride PES (continued) 

MP2 B3LYP 
Parameter 

6-3 IG* 6-311+G* 6-3 IG* 6-311+G* cc-pVTZ 
Exptl 

Dimer 

C1N2 1.2900 1.2897 1.2857 1.2832 1.2807 — 

C3N2 1.5242 1.5220 1.5143 1.5101 1.5081 — 

C3N4 1.2900 1.2897 1.2857 1.2832 1.2807 — 

C3H8 1.6823 1.6755 1.6959 1.6898 1.6866 — 

C1H9 1.6823 1.6755 1.6959 1.6898 1.6866 — 

C3N2C1 76.79 77.28 77.40 77.85 77.81 — 

N4C3N2 103.22 102.72 102.60 102.15 102.19 — 

N4C3C18 132.00 132.21 131.62 131.65 131.69 — 

N2C1C19 132.00 132.21 131.62 131.65 131.69 — 

TS (II) 

C1N2 1.2407 1.2378 1.2207 1.2146 1.2114 — 

C3N2 1.8892 1.8853 1.9122 1.8993 1.8972 — 

C3N4 1.2408 1.2377 1.2206 1.2146 1.2114 — 

C3C18 1.7064 1.6989 1.7241 1.7182 1.7137 — 

C1C19 1.7064 1.6992 1.7250 1.7185 1.7139 — 

N4C3N2 116.43 115.17 113.00 112.23 111.95 — 

N4C3C18 138.85 139.51 140.91 141.03 141.66 — 

N2C1C19 138.85 139.47 140.76 141.00 141.65 — 

N4C3N2C4 -150.43 -149.89 -143.02 -144.94 -145.81 — 

C18C3N4C1 155.76 155.37 153.61 154.00 154.52 — 

C19C1N2C3 155.77 155.42 153.84 154.03 154.48 — 

(C1CN)3 

C1N2 1.1841 1.1787 1.1630 1.1555 1.1532 — 

C3N2 3.1150 3.1067 3.3944 3.5337 3.6131 — 

C3N4 1.1841 1.1786 1.1630 1.1555 1.1532 — 

C5N4 3.1169 3.1088 3.3462 3.5068 3.5711 — 

C5N6 1.1841 1.1787 1.1630 1.1555 1.1532 — 

C5C17 1.6342 1.6305 1.6420 1.6370 1.6329 — 

C3C18 1.6342 1.6305 1.6417 1.6370 1.6328 — 

C1C19 1.6343 1.6305 1.6419 1.6371 1.6329 — 

N6C5C17 177.70 178.55 178.67 179.26 179.28 — 

N2C18C3 67.43 68.16 72.77 76.77 79.45 — 

C18N2C1 170.14 170.34 164.77 162.25 159.87 — 

N2C18 3.3525 3.3199 3.4969 3.5287 3.5359 



and DFT predictions correspond to the largest basis set used at each level (i.e., the MP2/6-311+G* 

and DFT/cc-pVTZ results, respectively). MP2 and DFT predictions using smaller basis sets than 

these are provided in Tables 1-3 to show basis set dependencies, but are not discussed in detail nor 

compared with experiment. 

3.1 Geometries. Structural data for gas-phase cyanuric chloride are not available; the only 

experimental information about the molecular structure of cyanuric chloride comes from electron 

(Akimoto 1955) and x-ray diffraction studies (Pascal 1992; Xu, Ho, and Pascal 1994; 

Maginn et al. 1993) of the crystal. The x-ray analysis of the cyanuric chloride crystal by Xu, Ho, and 

Pascal (1994) indicates that the molecular geometry has approximate D3h symmetry and that the 

triazine ring is planar and consists of equilateral C-N bonds (1.325 A). The triazine ring is not a 

regular hexagon; the N-C-N and C-N-C angles are reported to be 127.4° and 112.7°, respectively. 

These structural parameters are very similar to those of gaseous .ry/n-triazine (Lancaster and Stoicheff 

1956). Pascal and Ho (1992) did not report the C- Cl bond distance. Another x-ray diffraction study 

by Maginn et al. (1993) provided a mean C- Cl intramolecular bond distance of 1.703 A and a mean 

observed NCN angle of 126.23° that differs by 1.2° from that observed by Pascal and Ho (1992). 

An earlier electron diffraction study of the crystal (Akimoto 1955) provided the following parameter 

set 

C-N = 1.33 ±0.02 A, 

C-C1=1.68±0.03A, 

and 

N-C-N angle = 125 ±3°. 

(apparently assuming that the triazine ring is a regular hexagon, which has been shown to be 

incorrect) (Pascal and Ho 1992; Xu, Ho, and Pascal 1994; Maginn et al. 1993). We report this earlier 

work because these results were used in the analysis of the crystal vibrational spectrum provided by 

Thomas et al. (1970), against which we compare our results. 



Table 2. Harmonic Vibrational Frequencies (cm1) 

Mode 
MP2 B3LYP 

Exptl 
6-3 IG* 6-311+G* 6-3 IG* 6-311+G cc-pVTZ 

Cyanuric Chloride 

1 142 138 139 139 140 156a 

2 168 156 165 163 165 178a 

3 168 156 166 164 167 178a 

4 213 211 208 208 207 216a 

5 213 211 209 208 208 216a 

6 411 413 399 398 396 408a 

7 474 476 463 464 461 474,a 46 lb 

8 474 476 463 464 462 474,a 46 lb 

9 509 505 505 505 501 610a 

10 646 606 655 651 667 652a 

11 646 606 656 651 667 652a 

12 796 749 811 815 820 795,a 749b 

13 877 880 859 859 854 849a 

14 877 880 860 860 854 849a 

15 995 998 989 993 987 977a 

16 1284 1265 1227 1201 1197 1590,a 595" 

17 1308 1298 1287 1278 1279 1297a 

18 1322 1311 1301 1292 1290 1260a 

19 1322 1311 1301 1293 1290 1260a 

20 1573 1559 1550 1539 1534 1500a 

21 1573 1559 1550 1539 1534 1500a 

C1CN 

1 349 346 392 392 405 378c 

2 349 346 392 392 505 378c 

3 755 757 741 740 742 744c 

4 2154 2135 2326 2310 2311 2216c 

TS(I) 

1 584/ 563/ 519/ 529/ 539/ — 

2 71 51 64 69 65 — 

3 71 51 65 70 66 — 

4 77 65 69 72 69 — 

5 144 144 123 121 124 

Thomas et al. (1970). 
Wilson (1973). 
Lafferty, Lide, and Toth (1965). 



Table 2. Harmonic Vibrational Frequencies (cm"1) (continued) 

MP2 B3LYP 
Pvntl 

Mode 
6-3 IG* 6-311+G* 6-3IG* | 6-311+G | cc-pVTZ 

TS (I) (continued) 

6 144 144 124 122 124 
7 264 264 225 227 227 
8 264 264 225 227 227 

D 9 304 303 281 284 283 
10 456 432 440 441 441 
11 456 432 441 441 441 
12 485 459 447 454 460 
13 487 482 448 454 461 
14 487 482 479 489 495 
15 517 521 510 521 522 
16 732 735 698 694 693 
17 811 809 762 758 758 
18 811 809 762 758 758 
19 1958 1930 2022 1990 1993 
20 2001 1977 2109 2085 2087 
21 2001 1977 2110 2086 2087 

(C1CN)3 

1 14 13 8 17 13 
2 14 14 16 20 18 
3 24 28 24 24 20 
4 54 56 33 26 22 
5 54 56 34 28 25 
6 63 66 50 38 34 
7 63 66 51 47 48 
8 73 78 54 48 49 
9 98 99 62 53 51 
10 349 346 395 390 407 
11 351 346 396 391 408 
12 351 348 396 394 411 
13 357 354 399 397 412 
14 357 354 400 397 412 
15 361 358 402 399 413 

- 16 763 764 748 746 749 
17 763 764 748 746 749 
18 763 764 749 747 749 

, 19 2159 2138 2328 2310 2310 
20 2159 2138 2328 2310 2310 
21 2159 2138 2329 2311 2311 

Dimer 

1 97 94 102 104 105 
2 223 223 211 211 211 

9 



Table 2. Harmonic Vibrational Frequencies (cm1) (continued) 

1— MP2 B3LYP 
Exptl IMode 

6-3 IG* 6-311+G* 6-3 IG* 6-311+G cc-pVTZ 

Dimer (continued) 

3 369 370 361 361 359 — 

4 484 472 469 472 469 — 

5 487 483 495 500 513 — 

6 637 642 614 617 615 — 

7 658 654 678 689 691 — 

8 904 903 916 908 907 — 

9 964 969 947 948 941 — 

10 1137 1136 1086 1081 1074 — 

11 1645 1621 1582 1562 1559 — 

12 1664 1640 1641 1623 1620 — 

TS (II) 

1 595/ 598/ 519/ 555/ 570/ — 

2 81 79 88 83 79 — 

3 274 272 238 236 236 — 

4 326 323 303 303 300 — 

5 458 458 435 434 438 — 

6 502 494 453 452 446 — 

7 538 533 499 496 496 — 

8 547 548 508 498 499 — 

9 720 715 612 602 599 — 

10 842 825 731 708 698 — 

11 1724 1698 1800 1781 1782 — 

12 1950 1911 1924 1911 1914 

There is good agreement between the calculated and experimental structural parameters for 

cyanuric chloride (Table 1). The MP2/6-311+G* and DFT/cc-pVTZ predictions of all structural 

parameters are within 1 % of experiment. Both methods predict C- N bond distances in the cyanogen 

chloride molecule that are within 2% or less of the experimental gas-phase values (Lafferty, Lide, and 

Toth 1965). Both methods predict C-Cl bond distances that are within 0.5% of experiment (Lee, 

Yang, and Parr 1988; Miehlich et al. 1989). 

10 
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Structures obtained from MP2 are qualitatively similar to those predicted by DFT for the TS for 

reaction I, the dimer, and the TS for dimer formation in reaction II. The structures of the TS for 

reaction I and the dimer are very similar to those of the sym-triazine system (Pai, Chabalowski, and 

Rice 1996a, 1996b). We did not look for the TS for formation of the dimer from the monomers in 

the sym-triazine study since we had eliminated that reaction as the low-energy mechanism after 

comparing relative energetics of the dimer minima with the TS for three-fold concerted reaction. It 

was necessary to determine the TS for dimer formation from 2 C1CN, since the energy of the stable 

dimer (i.e., C12C2N2 + C1CN) lies below or is only slightly higher than TS (I). The structure of this 

species is nonplanar although the stable dimer is planar. The optimized structure of the (C1CN)3 

cluster is cyclic and has a C3 axis of rotation. 

3.2 ERC Calculations. Energies and structures along the reaction path for concerted triple 

association determined from B3LYP/6-31G* IRC calculations are shown in Figure 2. The energies 

are relative to 3 C1CN. Negative values of the reaction coordinate correspond to the (C1CN)3 cluster 

region of the PES, and positive values along the reaction coordinate correspond to the cyanuric 

chloride region of the PES. The reaction path coordinate value 0.0 corresponds to the TS connecting 

the (C1CN)3 cluster and cyanuric chloride minima. The C3 axis of rotation of the structures, while not 

imposed in the calculations, is maintained all along the reaction path. 

The greatest difference in structural parameters between the cyanogen chloride and sym-triazine 

systems is in the (XCN)3 cluster, X = Cl, H. However, the structures at the TS for the concerted 

triple association of C1CN to form cyanuric chloride are very similar to those for sym-triazine 

formation: the CN1 and C-Cl bonds have almost the same values as the isolated monomer. Also, 

the C1CN angle (144°) is closer to the cyanuric chloride value (122 °) than the monomer/cluster value 

(180°). The large difference in the XCN angle between the TS and the XCN monomers was used 

to explain the substantial vibrational excitation of the bending vibration in the HCN product upon 

decomposition of sym-triazine (Ondrey and Bersohn 1984). Since the features along the IRC for this 

system are similar to that of the sym-triazine system, it is reasonable to predict that vibrationally hot 

C1CN product molecules, preferentially excited in the bending mode, would be observed upon 

photodissociation of cyanuric chloride. 
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Figure 2. B3LYP/6-31G* Energies Along the Reaction Path for Reaction I. The Stable and 

Transition State Structures and Three Other Structures Along the Reaction Path 
Have Been Shown to Enable the Reader to Visualize the Mechanism of Concerted 
Triple Association and Dissociation. The (C1CN)3 Cluster Is Illustrated in the 
Far-Left Portion of the Figure. The Cyanuric Chloride Molecule Is Represented by 
the Far-Right Structure of the Figure. 
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3.3 Frequencies. Table 2 lists the harmonic vibrational frequencies of the critical points for 

reactions I and II calculated using the ab initio and DFT methods and the basis sets mentioned in the 

previous sections. We present the frequencies of the smaller 6-3 IG* basis due to the use of only this 

basis in all of the IRC calculations. 

The most complete vibrational analysis for this system was performed by Thomas et al. (1970). 

They reported the single-crystal infrared (IR) and Raman spectra for cyanuric chloride at 298 and 

77 K and made complete assignments for all fundamentals.   Additionally, they performed a 

normal-coordinate analysis using a modified-valence force-field model and assumed that the triazine 

ring of the cyanuric chloride is a regular hexagon with all angles equal to 120°. They also assumed 

the C-N and C-Cl bond lengths given by Akimoto (1955). A fit of this model to the observed 

frequencies resulted in a set of frequencies and corresponding eigenvectors for the normal modes of 

cyanuric chloride (Figure 9 of Thomas et al. 1970).  Wilson (1973) later analyzed the gas-phase 

spectrum of cyanuric chloride and changed only a few of the vibrational assignments of 

Thomas et al. (1970). He reports that, with the exception of vn (749 cm"1 in gas phase, 795 cm"1 in 

the solid), the gas-phase spectrum of cyanuric chloride is very similar to the condensed-phase spectra. 

We were able to match all calculated vibrational modes of the cyanuric chloride to experimental 

assignments through visual inspection of the eigenvectors when compared to those illustrated in 

Figure 9 of Thomas et al. (1970). Calculated vibrational frequencies of cyanuric chloride are within 

100 cm"1 of the experimental frequencies, with the exception of modes denoted v4 and v5 in Thomas 

et al. (1970) (modes 16 and 9 here). In the gas phase, these A2' modes are inactive and not observed; 

however, in the solid phase, data for these modes were available and resulted in the assignment of 

bands at 1,590 and 610 cm"1 to v4 and v5, respectively. For the methods used in this study, the 

calculated frequencies corresponding to v4 and v5 differ from experiment by ~400 cm"1 and 

~110 cm"1, respectively. A similar large discrepancy between theory and experiment for these two 

A2' modes for .rym-triazine was found as well (Pai, Chabalowski, and Rice 1996a, 1996b).  The 

predicted frequencies of C1CN agree to within 100 cm"1 of experiment (Lafferty, Lide, and 

Toth 1965) for all methods and basis sets. There are no measured vibrational spectra for the other 

critical points. 
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3.4 Vibrational Coupling. In our previous study, we used a method of projecting the 

vibrational eigenvectors of sym-triazine and the symmetric (HCN)3 cluster onto the reaction path for 

the concerted triple association reaction Pai, Chabalowski, and Rice (1996a). Our premise in doing 

so was based on studies that indicate a correlation between the magnitude of the projection of a 

vibration onto the reaction coordinate and the coupling ofthat mode with the reaction path (Waite 

and Miller 1981; Rice, Grosh, and Thompson 1995). For modes that project strongly onto the 

reaction coordinate, we concluded that these vibrations are possible efficient energy transfer routes 

between the molecules and the reaction coordinate. 

In this study, we provide a similar analysis of the vibrational modes. As detailed in our previous 

work (Pai, Chabalowski, and Rice 1996a), we calculated local normal modes (Miller, Handy, and 

Adams 1980) for points along the reaction path for reaction I at the B3LYP/6-31G* level and 

projected out the infinitesimal translations and rotations, leaving 3N-7 bound vibrational modes of 

the molecule plus the eigenvector corresponding to the direction along the reaction path (Miller, 

Handy, and Adams 1980). We then projected the eigenvectors corresponding to the harmonic 

vibrational frequencies of equilibrium cyanuric chloride and the (C1CN)3 cluster onto the eigenvector 

associated with the direction along the reaction path for selected reaction coordinate values. The 

results of these projections onto the reaction path eigenvectors are shown in Figures 3 and 4, 

respectively. Only those modes that have projections greater than 0.05 are shown in these figures. 

There are five vibrational modes of cyanuric chloride that project strongly onto the reaction path 

for reaction I; their atomic motions are illustrated in Figure 3. All of these motions exhibit a 

three-fold symmetric axis of rotation perpendicular to the plane of the triazine ring, and three of them 

(399,989, and 1,227 cm"*) are similar to the sym-triazine vibrational modes that project strongly onto 

reaction I. Cyanuric chloride has no analog to the remaining .rym-triazine mode that projects weakly 

onto the reaction coordinate for reaction I. 

There are three vibrational modes for the (C1CN)3 cluster that project strongly onto the reaction 

path and three additional vibrational modes that project less strongly. The atomic motions 

corresponding to these normal modes of vibration are illustrated in Figure 4. A comparison of these 
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modes with those of the (HCN)3 cluster that project onto the sy/n-triazine reaction coordinate 

(Pai, Chabalowski, and Rice 1996a, 1996b) cannot be performed due to the significant differences 

in the structure of the clusters of the two systems. 

As in our previous study, we conclude that the vibrations that project onto the reaction coordinate 

indicate the most likely routes through which reaction energy distributed in either of these species can 

transfer efficiently to the reaction coordinate for reaction I. 

3.5 Energetics. Absolute energies of critical points on the cyanuric chloride PES are given in 

Table 3. The heats of reaction and the energies of critical points relative to three isolated C1CN 

molecules are also given in Table 3. All relative energies discussed in this section have been corrected 

for zero-point energies. 

For both methods and all basis sets other than QCISD(T)//MP2/6-311+G*, the minimum 

corresponding to the dimer + C1CN is lower in energy than the barrier to concerted triple association. 

The QCISD(T)//MP2/6-311+G* results predict that the dimer + C1CN minimum is only 1 kcal/mol 

higher in energy than the barrier to concerted triple association. This is different than the sym-triazine 

system, in which all methods predicted that the dimer + HCN minimum was higher in energy than the 

barrier to concerted triple association (Pai, Chabalowski, and Rice 1996a, 1996b). Since our primary 

goal is to determine the lowest energy pathway to formation of cyanuric chloride, we located the 

saddle point leading to formation of the dimer from C1CN to determine if it was lower in energy than 

the barrier to reaction I. At all levels and using all basis sets, the barrier to formation of the dimer 

is significantly higher in energy than the barrier to triple concerted association. The DFT/cc-pVTZ 

barrier to formation of the dimer is 63.4 kcal/mol; the DFT/cc-pVTZ barrier to concerted triple 

association is 42.9 kcal/mol. The QCISD(T)//MP2/6-311+G* barrier for concerted triple association 

is 41.0 kcal/mol. The QCISD(T)//MP2/6-311+G* barrier to formation of the dimer is 76.7 kcal/mol, 

respectively. 

The free energy of activation for these associations includes the effect of entropy, which could 

be quite important in these reactions. We calculated the free energies of activation for reactions I 
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and II at the B3LYP/cc-pVTZ level. For reaction I, we calculated the free energy of activation from 

the cluster minimum. For reaction II, we calculated the free energy of activation from the C1CN 

reactants. The free energies of activation for reactions I and II are 53.4 and 72.6 kcal/mol, which are 

7.6 and 9.2 kcal/mol higher in energy than the respective zero-point-corrected barriers. We also 

calculated the free energy of activation for reaction I from the three isolated C1CN reactants. The 

free energy of activation in reaction I at the B3LYP/cc-pVTZ level from the isolated molecules is 

61.8 kcal/mol, which is ~ 19 kcal/mol higher than the zero-point-corrected barrier. It is worth noting 

that the reduction in the entropic contribution to the free energy of activation by the formation of the 

cyclic cluster, which significantly increases the probability of this reaction path. 

Since the barrier for the formation of the dimer is so much higher than that of the triple concerted 

association reaction, this mechanism was eliminated as the lower energy path for formation of 

cyanuric chloride. Therefore, we did not search for the TS for addition of a C1CN molecule to the 

dimer to form cyanuric chloride. As in the .yy/n-triazine system, the lower energy pathway to 

formation of cyanuric chloride is the concerted triple association. Thermal activation barriers for 

reaction I or its reverse (concerted triple dissociation) have not been measured. Therefore, we cannot 

gauge the accuracy of these barrier heights. For the analogous system, sym-triazine, the 

B3LYP/cc-pVTZ barriers were within 6 and 2 kcal/mol of the QCISD(T)//MP2/cc-pVTZ predictions 

for the forward and reverse of reaction I, respectively. 

Both methods show a significant heat of reaction (T = 298 K) for formation of cyanuric chloride 

(Table 3). The DFT/cc-pVTZ value is -63.4kcaVmolandtheQCISD(T)//MP2/6-311+G* prediction 

is -61.2 kcal/mol. In our previous study (Pai, Chabalowski, and Rice 1996b) on ^ym-triazine, we 

showed that the B3LYP/cc-pVTZ predictions were within a 1.1-kcal/mol agreement with 

experimental measurements of the reaction enthalpy, which was significantly better than 

QCISD(T)//MP2/cc-pVTZ predictions. If this trend is maintained for the cyanuric chloride system, 

the heat of reaction for formation of cynauric chloride is approximately -63 kcal/mol. 

As in the sym-triazine system (Pai, Chabalowski, and Rice 1996a, 1996b), reaction path 

calculations indicate that the weakly bound cyclic (C1CN)3 cluster is a reaction intermediate to the 
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formation of cyanuric chloride. Our DFT/cc-pVTZ and QCISD(T)//MP2/6-311 +G*calculations 

indicate that this species is lower in energy than isolated monomers by 2.9 and 8 kcal/mol, 

respectively. 

These calculations correspond to gas-phase reactions, whereas the XCN (X = H, Cl) in the 

munitions described in section 1 are compressed to the liquid state. It is well known that reaction 

barriers can be affected when in solution phase (Hynes 1985, 1994). Therefore, the barriers to 

association calculated in this study could be an upper limit for reactions of C1CN in aged munitions. 

Also the cluster is a prereaction intermediate on the concerted triple association pathway and has an 

arrangement of atoms that is favorable to concerted triple association. This could significantly reduce 

the entropic hindrance to such an unusual association reaction. Once the barrier is crossed, our 

calculations indicate that there is substantial energy (~100 kcal/mol assuming gas-phase barriers) 

available to the translational or internal modes of the product. This amount of energy is sufficient to 

initiate additional reaction. A translationally "hot" cyanuric chloride molecule in the liquid state could 

easily transfer energy through collisions with adjacent species (including clusters) in the liquid. The 

large reaction exothermicity for cyanuric chloride formation and other features of the PES lends 

support to the suggestion that acceleration of this reaction could contribute to the initiation of 

explosions of aged containers of C1CN (Aaron et al. 1996). 

4. Conclusions 

We have presented ab initio and DFT calculations of formation reactions of cyanuric chloride 

from isolated C1CN. Two pathways were examined: (1) a concerted triple association reaction, 

(I) 3C1CN -* CI3C3N3, 

and a step-wise association reaction, in which a dimer is first formed followed by addition of another 

C1CN to form cyanuric chloride 
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(II) 3C1CN - C12C2N2 + C1CN - C13C3N3. 

Critical points associated with these two reactions were located through MP2 and DFT (B3LYP) 

geometry optimizations using basis sets of varying sizes and characterized through normal-mode 

analyses. Energy refinements of the MP2 calculations were done at the QCISD(T) level. Predicted 

structures were in reasonable agreement with experiment where available. As in previously reported 

calculations on the hydrogen analog of this system (Pai, Chabalowski, and Puce 1996a, 1996b), the 

geometry of cyanuric chloride is described extremely well at the DFT level with all three basis sets, 

which suggests that accurate geometries are available without requiring large basis sets or 

computationally expensive perturbation techniques. The MP2 and DFT frequencies are within 

~100 cm"1 of their corresponding experimental values where available. 

The zero-point-corrected DFT/cc-pVTZ energy barrier for reaction II is 63.4 kcal/mol; the 

DFT/cc-pVTZ energy barrier for reaction I is 42.9 kcal/mol. QCISD(T)//MP2/6-311+G* barriers 

are 76.7 kcal/mol for reaction II and 41.0 kcal/mol for reaction I. These results indicate that the 

lower energy pathway to formation of cyanuric chloride from isolated monomer molecules is through 

the concerted triple association reaction. Additionally, MP2 and B3LYP IRC calculations for 

reaction I resulted in the location of a local minimum on the potential energy surface that corresponds 

to a weakly bound cyclic (C1CN)3 cluster. 

The (C1CN)3 cluster, whose hydrogen analog was seen experimentally and theoretically 

determined for the yym-triazine system (Pai, Chabalowski, and Rice 1996a, 1996b), is a prereaction 

intermediate leading to the formation of cyanuric chloride. Its energy relative to isolated C1CN is 

within the range of -2.9 to -8.0 kcal/mol. The arrangement of the atoms in this cluster removes 

significant steric hindrance to the concerted triple association reaction. Reaction energy appropriately 

imparted to the cluster would result in the concerted triple association to form cyanuric chloride. 

The heat of reaction for formation of cyanuric chloride (T = 298.15 K) from the B3LYP/cc-pVTZ 

calculations is -63.4 kcal/mol, in close agreement with the QCISD(T)//MP2/6-311+G* prediction 

(-61.2 kcal/mol). This heat of reaction, coupled with the barrier to formation of cyanuric chloride 
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from3ClCN, indicates that, upon traversing the association barrier, -100 kcal/mol energy is available 

to the product and surroundings. 

We also projected the vibrational eigenvectors of cyanuric chloride and the (C1CN)3 cluster onto 

the eigenvector associated with the direction of the reaction coordinate at various points along the 

reaction path for the concerted reaction. For points all along the reaction path, including the TS, five 

vibrational modes of cyanuric chloride and six vibrational modes of the (C1CN)3 cluster project onto 

the reaction path. These projections indicate that certain vibrational modes of cyanuric chloride and 

the (C1CN)3 cluster are coupled to the reaction coordinate, suggesting efficient pathways through 

which reaction energy of either stable species can couple with the reaction path for the concerted 

association/decomposition reactions. The energy released upon traversing the barrier to formation 

of cyanuric chloride is sufficient to initiate additional reaction. The large energy release and the 

prereaction cluster intermediate support the suggestion that acceleration of polymerization reactions 

of C1CN could be contributing factors leading to explosions of aged containers of C1CN. 
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